6,336 research outputs found

    High density limit of the two-dimensional electron liquid with Rashba spin-orbit coupling

    Full text link
    We discuss by analytic means the theory of the high-density limit of the unpolarized two-dimensional electron liquid in the presence of Rashba or Dresselhaus spin-orbit coupling. A generalization of the ring-diagram expansion is performed. We find that in this regime the spin-orbit coupling leads to small changes of the exchange and correlation energy contributions, while modifying also, via repopulation of the momentum states, the noninteracting energy. As a result, the leading corrections to the chirality and total energy of the system stem from the Hartree-Fock contributions. The final results are found to be vanishing to lowest order in the spin-orbit coupling, in agreement with a general property valid to every order in the electron-electron interaction. We also show that recent quantum Monte Carlo data in the presence of Rashba spin-orbit coupling are well understood by neglecting corrections to the exchange-correlation energy, even at low density values.Comment: 11 pages, 5 figure

    Correlation energy in a spin polarized two dimensional electron liquid in the high density limit

    Get PDF
    We have obtained an analytic expression for the ring diagrams contribution to the correlation energy of a two dimensional electron liquid as a function of the uniform fractional spin polarization. Our results can be used to improve on the interpolation formulas which represent the basic ingredient for the constructions of modern spin-density functionals in two dimensions.Comment: 3 pages, 1 figur

    Exchange energy and generalized polarization in the presence of spin-orbit coupling in two dimensions

    Get PDF
    We discuss a general form of the exchange energy for a homogeneous system of interacting electrons in two spatial dimensions which is particularly suited in the presence of a generic spin-orbit interaction. The theory is best formulated in terms of a generalized fractional electronic polarization. Remarkably we find that a net generalized polarization does not necessarily translate into an increase in the magnitude of the exchange energy, a fact that in turn favors unpolarized states. Our results account qualitatively for the findings of recent experimental investigations

    Two exact properties of the perturbative expansion for the two-dimensional electron liquid with Rashba or Dresselhaus spin-orbit coupling

    Full text link
    We have identified two useful exact properties of the perturbative expansion for the case of a two-dimensional electron liquid with Rashba or Dresselhaus spin-orbit interaction and in the absence of magnetic field. The results allow us to draw interesting conclusions regarding the dependence of the exchange and correlation energy and of the quasiparticle properties on the strength of the spin-orbit coupling which are valid to all orders in the electron-electron interaction.Comment: 6 pages, 1 figur

    On the RKKY range function of a one dimensional non interacting electron gas

    Get PDF
    We show that the pitfalls encountered in earlier calculations of the RKKY range function for a non interacting one dimensional electron gas at zero temperature can be unraveled and successfully dealt with through a proper handling of the impurity potential.Comment: to appear in Phys. Re

    Fluctuation Relation beyond Linear Response Theory

    Full text link
    The Fluctuation Relation (FR) is an asymptotic result on the distribution of certain observables averaged over time intervals T as T goes to infinity and it is a generalization of the fluctuation--dissipation theorem to far from equilibrium systems in a steady state which reduces to the usual Green-Kubo (GK) relation in the limit of small external non conservative forces. FR is a theorem for smooth uniformly hyperbolic systems, and it is assumed to be true in all dissipative ``chaotic enough'' systems in a steady state. In this paper we develop a theory of finite time corrections to FR, needed to compare the asymptotic prediction of FR with numerical observations, which necessarily involve fluctuations of observables averaged over finite time intervals T. We perform a numerical test of FR in two cases in which non Gaussian fluctuations are observable while GK does not apply and we get a non trivial verification of FR that is independent of and different from linear response theory. Our results are compatible with the theory of finite time corrections to FR, while FR would be observably violated, well within the precision of our experiments, if such corrections were neglected.Comment: Version accepted for publication on the Journal of Statistical Physics; minor changes; two references adde
    • …
    corecore